Tetrahedron Letters No. 14, pp 1125 - 1128, 1976. Pergamon Press. Printed in Great Britain.

A NEW INDEX FOR PREDICTING THE REACTIVE SITE OF INTRAMOLECULAR PHOTO-CYCLOADDITION

T. Tezuka and 0. Kikuchi

Department of Chemistry, The University of Tsukuba Sakura-mura, Ibaraki 300-31, Japan

(Received in Japan 5 February 1976; received in UK for publication 24 February 1976)

The perturbation method based on the frontier-orbital coefficients predicts successfully the regiospecificity of the thermally-allowed 4+2π type cycloaddition. $^{\mathrm{1-3}}$ – There are, however, few attempts to predict the specificity of the photoreaction site.^{3a,4} Very recently, Lewis et al. reported that the regiospecificity of the photo 2+2r cycloaddition of stylene to substituted dienes can be explained by the second-order perturbation method including only the frontier orbitals of the two reactants.⁵ This sort of perturbation treatment, however, can not be applicable to the intramolecular problems. We wish to report a new index ΔG_{rs} for predicting the reaction course of the intramolecular cyclization of cycloheptatriene and tropone derivatives.

In substituted cycloheptatriene $\underline{1}$, for example, there are two theoretically possible cyclization sites, $C_1 - C_4$ (2) and $C_3 - C_6$ (3), both of which are photochemically allowed disrotatory processes. $^6\;$ However the direction of cyclization of 1 is distinctly specified in the actual photoreaction depending on the substituted groups. 1-Methoxycycloheptatriene (1: X=OMe; Y=H) cyclizes exclusively at $C_1 - C_4$ to give bicyclic derivative (2: X=OMe; Y=H), $\frac{7}{7}$ while l-carboethoxycycloheptatriene($\underline{\texttt{l}}$:X=COOEt;Y=H) affords only the C $_3$ -C $_6$ cyclization product($\underline{\texttt{3}}$). 8

1125

1n order to explain the photoreaction courses on the basis of MO method, we defines the ΔG_{rs} value which is derived from the stability gain of the frontierorbitals. The flow $4 \div 5$ illustrates that two 2p AO's at the reaction sites, r and s , in 4 construct the σ -orbital in 5 after the cyclization, during which the electron distribution on the two sites changes from non-equivalent to equivalent. In photo-excited cycloheptatriene, the HOMO(ϕ _i) and LUMO(ϕ _L) are singly-occupied orbitals.⁹ When the disrotatory cyclization proceeds, the electrons in the two AO's at r and s of $\phi_k(\underline{6})$ must be redistributed equally in the AO's of $\underline{7}$ which may be correlated to the σ -orbital of the product.⁶ In this case, the stability gain caused by the redistribution of the electrons is positive, since the electrons are distributed more favourably in 7 than in 6 for the formation of the σ bonding orbital. The magnetude of the stability gain may be proportional to the difference between LCAO coefficients at r and s of 6 , and be expressed by $|q_r^k - q_s^k|$, where $q_r^k = C_{rk}^2$. Contrary to this, the two AO's of $\phi_i(\underline{8})$ loses the stability during the process $\underline{8}$ + $\underline{9}$. The stability gain in this case is $r = |q_r^i - q_c^i|$. The total gain of the stability with proceeding the cyclization must be the sum of these terms. It is, thus, proposed that the photo-cyclization occurs selectively at the position having the larger ΔG_{re} value.

$$
\Delta G_{rs} = |q_r^k - q_s^k| - |q_r^i - q_s^i|
$$

Substituted cyclo-	ΔG_{TS}		$\Delta P_{\texttt{rs}}$		$*3$ Exp.
heptatrienes. ^{*2}	$1 - 4$	$3 - 6$	$1 - 4$	$3 - 6$	
6 5 $\overline{2}$ 4	0.000	0.000	0.436	0.436	
$1 - x$	0.085	-0.069	0.428	0.435	$\overline{10}$
$2 - X$	-0.070	-0.004	0.435	0.435	$\overline{\pi}$
$3 - X$	0.118	-0.060	0.432	0.432	$\overline{12}$
$1 - Y$	-0.085	0.069	0.428	0.435	$\overline{13}$
$2 - Y$	0.070	0.004	0.435	0.435	$\overline{14}$
$3 - Y$	-0.118	0.060	0.432	0.432	$\overline{15}$
$1 - X$; 4 - Y	0.142	-0.185	0.424	0.427	$\underline{16}$
$1 - X$; $3 - Y$	-0.031	-0.010	0.431	0.433	17
$1 - X$; 6 - Y	0.152	-0.152	0.422	0.422	18
$2 - X$; $3 - X$	0.048	-0.064	0.432	0.436	$\frac{19}{1}$

Table 1. ΔG_{rs} values and experimental observations.^{*1}

*1. Huckel MO's were obtained by the inductive-model calcualtions in which the Coulomb integral of the substituted C atom is set as $\alpha = \alpha(C) \pm 0.2\beta(CC)$. Resonance-model calculations were also performed using OMe and COOMe as examples of electron-donating and electron-withdrawing groups, respectively. The results exerted no influence on those obtained by the inductive-model calculations. *2. X and Y indicate the electron-donating and -withdrawing groups, respectively. *3. The dotted lines indicate the experimentally identified positions $8,10$ of the cyclization, and the black circles, the positions theoretically predicted by ΔG_{rs} .

The ΔG_{rel} values for a number of substituted cycloheptatrienes and tropones were calculated by the Huckel MO method. Some ΔG_{rec} values of substituted cycloheptatrienes are presented in Table 1 as well as the corresponding experimental results. $8,10$ All $\Delta G_{r,s}$ values agree with the experimental evidence except for 17. The photo-cyclization sites in methoxytropones (20 and 21)¹⁰ are also well predicted by the ΔG_{rec} values for the $\pi \to \pi^*$ excitation obtained by the resonancemodel calculation. It is interesting to note that cycloheptatriene¹¹ and 2methoxytropone¹⁰ (AG_{1.4}=0.000 and AG_{3.6}=-0.008), which are known to be inert to the photo-cyclization, give equivalent and zero ΔG_{rs} values for the both directions. The cyclization of 17 would be such a case.

The index ΔP_{ref} , the difference of the bond-orders between the excited and ground states, which has been proposed by Malieu^{4b} for predicting the photoreactive site of intramolecular cyclization fails to give satisfactory prediction (Table 1). From the careful examination, it was found that each term appearing in the second-order perturbation caused by the interaction between r and s could not be a good index for the present purpose. The ΔG_{max} value proposed here explains not only the substituent effect for the intramolecular photocyclization, but also the empirical selection rule proposed by Brember et al. 8 for the photo-reactivity of substituted cycloheptatrienes.

The authors thank Professor Sigeru Oae for his encouragement.

References and Notes

- 1) K. Fukui, "Molecular Orbitals in Chemistry, Physics, and Biology" Ed. by P.-O. Lowdin and B. Pullmann, p.513, Academic Press, New York, N.Y. (1964).
- 2) 3) K.N. Hourk, J. Amer. Chem. Sot., 95, 4092(1973) and references cited therein. (a) W.C. Herndon, Chem. Rev., 2, 157(1972):
- (b) R.F. Hudson, Angew. Chem. \overline{In} ternat. Edit., 12, 36(1973).
- 4) (a) R. Daudel, "Advances in Quantum Chemistry" 5, 1(1970);
- (b) J.P. Malieu, Photochem. and Photobiology. 2, 291, 301(1966).
- 5) F.D. Lewis, C.E. Hayle and D.E. Johnson, J. Amer. Chem. Sot., 97, 3626(1975).
- 6) R.B. Woodward and R. Hoffmann, R.B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", p.39,
Academic Press Inc. (1970).
- 7) W.G. Borden, O.L. Chapman, R. Swindell, and T. Tezuka, J. Amer. Chem. Sot., E, 2979(1967).
- 8) (a) A.R. Brember, A.A. Gorman, and J.B. Sheridan, Tetrahedron Lefts., 653 (1971); (b) *A.R.* Brember, A.A. Gorman, R.L. Leyland, and J.B. Sheridan, ibid., 2511(1970).
- 9) Cyclization of 1 to 2 or 3 may be originated from the singlet state (Ref. 7).
- 10) O.L. Chapman, "Advances in Photochemistry" Ed. by W.A. Noyes, G.S. Hammond, and J.N. Pitts, Jr., 1, p.324, Interscience Pub. (1963).
- 11) R. Srinivasan, J. Amer. Chem. Sot., 84, 3432(1962).